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Abstract

Background.—The potential for selection bias in nonrepresentative, large-scale, low-cost survey 

data can limit their utility for population health measurement and public health decision making. 

We developed an approach to bias adjust county-level COVID-19 vaccination coverage predictions 

from the large-scale US COVID-19 Trends and Impact Survey.

Design.—We developed a multistep regression framework to adjust for selection bias in 

predicted county-level vaccination coverage plateaus. Our approach included poststratification to 

the American Community Survey, adjusting for differences in observed covariates, and secondary 

normalization to an unbiased reference indicator. As a case study, we prospectively applied this 

framework to predict county-level long-run vaccination coverage among children ages 5 to 11 y. 

We evaluated our approach against an interim observed measure of 3-mo coverage for children 

ages 5 to 11 y and used long-term coverage estimates to monitor equity in the pace of vaccination 

scale up.
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Results.—Our predictions suggested a low ceiling on long-term national vaccination coverage 

(46%), detected substantial geographic heterogeneity (ranging from 11% to 91% across counties 

in the United States), and highlighted widespread disparities in the pace of scale up in the 3 mo 

following Emergency Use Authorization of COVID-19 vaccination for 5- to 11-y-olds.

Limitations.—We relied on historical relationships between vaccination hesitancy and observed 

coverage, which may not capture rapid changes in the COVID-19 policy and epidemiologic 

landscape.

Conclusions.—Our analysis demonstrates an approach to leverage differing strengths of 

multiple sources of information to produce estimates on the time scale and geographic scale 

necessary for proactive decision making.

Implications.—Designing integrated health measurement systems that combine sources with 

different advantages across the spectrum of timeliness, spatial resolution, and representativeness 

can maximize the benefits of data collection relative to costs.
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Background

Local, representative, and timely data can provide immense benefit to public health decision 

making, but such data are costly to collect repeatedly with samples large enough for county-

level estimation in the United States. For example, during the rollout of the COVID-19 

vaccine, indicators of people’s vaccination intentions could ideally be used to predict 

subsequent vaccine uptake and to drive targeted efforts to reduce hesitancy and thereby 

increase achieved coverage. While representative survey data are expensive to collect 

frequently in large samples, low-cost, online survey data can achieve sufficient samples for 

county-level estimation but have been shown to yield biased estimates of selected outcomes, 

with misleadingly small margins of error.1–3 Although programmatic data offer retrospective 

reporting of some health indicators at the county level, these data become available too late 
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to enable prospective planning and decision making, and many important indicators do not 

have routine reporting systems.1,4

Combining data sources with different advantages and limitations can help to balance 

tradeoffs between time, cost, and representativeness of data collection.5 Enormous variation 

in life expectancy across counties in the United States underscores the importance of 

spatially granular measures of health.6 Previous studies have combined multiple data 

sources for retrospective bias correction and small area estimation of health indicators 

such as smoking prevalence, obesity prevalence, and cardiovascular disease mortality, 

among others.7–13 These studies have used a range of statistical techniques, including 

Bayesian hierarchical models, multilevel regression and poststratification, and propensity 

score matching. Bayesian hierarchical models and multilevel regression share information 

across nested units, for example, counties nested within states, and can account for 

observed covariates. Poststratification matches observed covariates to population reference 

data, aiming to adjust the sample to better represent the population, while propensity 

score matching uses the reference data to model the probability that population members 

are included in the sample. Our study extends this literature by applying regression, 

poststratification, and secondary normalization methods to a new stream of large-scale 

online health survey data.

The COVID-19 pandemic catalyzed a new era of massive real-time data collection for 

public health, exemplified by the US COVID-19 Trends and Impact Survey (CTIS), which 

ran continuously between April 2020 and June 2022.2 The US survey had an average of 

40,000 responses daily, which is much higher than samples achieved through household 

health surveys, and a response rate of approximately 1%, which is much lower than 

household health survey response rates. The size of CTIS allowed for timely small-area 

estimation of many policy-relevant leading indicators, but its utility has been questioned 

due to upward bias in estimates of vaccination coverage compared with representative 

reporting data.3 Considering the low survey response rate, selection bias—encompassing 

both sampling and nonresponse biases—may explain the difference between predicted and 

observed vaccination coverage. Approaches to gain actionable insights in the presence of 

selection bias from these large-scale online survey data remain relevant to responses to 

future public health emergencies and to general population health measurement, for which 

similar large-scale, low-cost surveys could be deployed.

In this study, we present a framework to generate bias-adjusted county-level estimates 

from a large-scale online survey. As an illustrative case study, we use data from CTIS 

to prospectively predict county-level vaccination coverage plateaus among children ages 5 

to 11 y. Although COVID-19 vaccination has been central to the public health response 

to the pandemic, coverage has plateaued well below 100%, with wide variation across 

communities. COVID-19 vaccination intentions have also been an important indicator 

derived from survey data over the course of the pandemic.8,14–18 Vaccination intentions 

can be used to anticipate eventual vaccination coverage for different groups, which can then 

be used to direct resources and targeted interventions, design policies, deploy additional risk 

reduction tools, and monitor both the pace and equity of scale up. In the United States, 
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children ages 5 to 11 y became eligible for COVID-19 vaccination when Emergency Use 

Authorization (EUA) was extended at the end of October 2021.19

Methods

We developed a multistep regression framework (Figure 1) to predict vaccination coverage 

plateaus among children ages 5 to 11 y. First, we estimated county-level parental hesitancy 

toward vaccinating their children using a mixed-effects logistic regression model fit to 

survey data. Next, we used a second logistic regression model to estimate the relationship 

between county-level parental hesitancy and observed vaccination coverage, for youth ages 

12 to 17 y, who became eligible for COVID-19 vaccination earlier than children ages 5 to 

11 and therefore provide a reference group. Finally, we combined the results from the 2 

regression models to predict county-level vaccination coverage for 5- to 11-y-olds.

Data Sources

We combined individual-level survey responses from wave 11 of CTIS, collected during the 

period from July 1, 2021, through October 31, 2021, with data from wave 12, collected 

during the period from December 19, 2021, through February 14, 2022. The survey was 

managed and implemented by the Delphi Group at Carnegie Mellon University. Participants 

were recruited through Facebook, and the sampling frame is the Facebook Active User base. 

Additional information on CTIS has been previously published.2 The full questionnaire for 

waves 11 and 12 is available online.20

In addition to CTIS, we used individual-level sociodemographic data (age, documented 

sex, education, race/ethnicity, and household structure) from the 2015 to 2019 American 

Community Survey (ACS) for poststratification.21 Individual-level data from ACS are 

available at the public-use microdata area level. Public-use microdata areas have a minimum 

population size of 100,000, so some large population counties contain multiple public-use 

microdata areas, while other small population counties may be combined into a single 

public-use microdata area. We mapped public-use microdata areas to counties using the 

Missouri Census Data Center’s Geographic Correspondence Engine.22 Counties are never 

split between 2 public-use microdata areas. When a single county contained multiple 

public-use microdata areas, we aggregated public-use microdata areas to the county level. 

When a single public-use microdata area spanned multiple counties, we assumed the same 

distribution of sociodemographic characteristics for each county in the public-use microdata 

area and scaled sample weights by relative county population size.

Finally, we used complete vaccination coverage data for ages 12 to 17 y reported at the 

county level by the Centers for Disease Control and Prevention (CDC) for the second-stage 

regression and data from the same source over the first 3 mo after eligibility for ages 5 to 11 

y for performance evaluation of coverage predictions.23

Estimating County-Level Hesitancy

To estimate county-level parental hesitancy, we fit a mixed-effects logistic regression to 

survey data on the stated intentions of parents/guardians regarding vaccinating their children. 

We classified ‘‘No, definitely not’’ and ‘‘No, probably not’’ as hesitant responses to the 

Reitsma et al. Page 4

Med Decis Making. Author manuscript; available in PMC 2024 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



question ‘‘Will you choose to get a COVID-19 vaccine for your child or children when they 

are eligible?’’ Responses of ‘‘Yes, definitely’’ and ‘‘Yes, probably’’ were considered not 

hesitant. Consistent with previous analyses, we used the imprecise but available construct of 

‘‘reported hesitancy’’ and focused on it principally as an intermediate indicator that would 

be subsequently mapped to long-run vaccination coverage.

The CTIS survey questionnaire evolved as new information became available over the 

course of the pandemic. Importantly, although wave 11 asked parents about vaccine 

hesitancy, it did not ask for the ages of their children. Since wave 12 elicited the age of 

the parent’s oldest child, we used it to examine differences in parental hesitancy for those 

whose oldest child was between the ages of 12 and 17 versus ages 5 to 11y.

The first-stage logistic regression modeled the probability of parental hesitancy as a function 

of fixed effects for documented gender (male, female), age group (18–24, 25–34, 35–44, 

45–54, 55–64, 65+ y), education (high school or fewer years of education, some college 

or a 2-y degree, 4-y degree, graduate degree), and race/ethnicity (Hispanic, non-Hispanic 

American Indian or Alaska Native, non-Hispanic Asian, non-Hispanic Black, non-Hispanic 

Native Hawaiian or Other Pacific Islander, non-Hispanic White, non-Hispanic multiracial 

or other race), and age group of child (unknown, 12–17 y, and 5–11 y) and nested random 

intercepts on state and county:

ln pijk
1 − pijk

= αjk + βXijk

αjk = αk + μjk; μjk ∼ N 0, σμjk
2 ,

αk ∼ N 0, σσk
2 ,

(1)

i = individual CTIS responses from parents/guardians; j = counties; k = states

We did not perform a weighted regression to include the CTIS survey weights, instead 

adjusting for the probability of inclusion and nonresponse through poststratification.24 

Poststratification effectively reweights subgroup-level estimates to be representative of a 

target population. We combined data from counties with a sample size of 10 or fewer 

into grouped counties, by state. To generate county-level predictions of hesitancy, including 

uncertainty around these predictions, from the first-stage regression, we generated 1,000 

draws of subgroup-level predicted probabilities of hesitancy for unique combinations of 

documented gender, age group, education, race/ethnicity, and county using the estimated 

regression

coefficients, assuming a multivariate normal distribution of the parameters including 

the fixed and random effects pgj , where g corresponds to each unique demographic 

characteristic combination. We then poststratified county- and subgroup-level predicted 

probabilities of hesitancy to produce overall county-level hesitancy estimates θ j :
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θ j = ∑wgjpgj
∑wgj

.

(2)

In other words, through equation 2 we produced a weighted average of predicted probability 

of hesitancy by county, in which the component predictions (by group g) are weighted by 

the population of that group according to a representative data set. Specifically, the weights 

wgj  used for poststratification were based on an analysis of individual-level data from the 

ACS that reflected household structure and incorporated children’s sample weights. First, 

we identified each child’s parents/guardians based on the first available of the following: 

1) parents directly coded in the ACS, 2) grandparents designated as responsible for 1 or 

more children directly coded in the ACS, 3) adults (18+ y) in the same household and same 

family unit, and 4) adults (18+ y) in the same household but different family unit. Next, we 

assigned the child’s sample weight to each of their parents/guardians, dividing the weight 

by the total number of identified parents/guardians. Finally, we summed the children’s 

sample weights across each subgroup g , defined by the demographic characteristics of 

the parents/guardians, and each county j , resulting in the final weight wgj  used for 

poststratification. By assigning children’s sample weights to their parents/guardians, our 

poststratified estimates are representative of the target population of children eligible for 

COVID-19 vaccination in each county.

Predicting County-Level Vaccination Coverage from Hesitancy Estimates

We used a second logistic regression model to translate county-level hesitancy estimates to 

county-level vaccination coverage predictions. We trained the model on paired county-level 

hesitancy and coverage estimates for children ages 12 to 17 y and then projected the 

predictive relationships onto the hesitancy estimates for children ages 5 to 11 y under the 

assumption that the same relationships would apply across the 2 age groups. To estimate 

the regression model for the 12- to 17-y group, we first generated estimates of parental 

hesitancy for this group using the same regression model specification described above for 

the 5- to 11-y group, in this case predicting hesitancy for parents of children ages 12 to 17 

y and poststratifying estimates based on household structure and sample weights of children 

ages 12 to 17 y. These county-level hesitancy estimates were used as independent variables 

in the second logistic regression. For our dependent variable, we used coverage data from 

February 1, 2022, which was approximately 9 mo after 12- to 17-y-olds first became eligible 

for vaccination (ages 16–17 y in early April 2021 and ages 12–15 y on May 10, 2021).

For states with at least 10 counties reporting vaccination coverage data for children ages 

12 to 17 y on February 1, 2022, with CDC reporting completeness exceeding 80%, we 

fit state-specific regressions. For all other states and the District of Columbia (n = 7), we 

fit regressions at the census division level. This prevented overfitting to small numbers of 

counties or low-quality reporting data. Regressions were weighted based on the size of the 

12- to 17-y-old population in each county. The second regression was fit to each of the 

1,000 draws of county-level hesitancy from the first regression. Uncertainty from the second 
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regression was captured through 1,000 draws from the multivariate normal distribution of 

the fixed effects plus the residual variance.

Finally, we used the models fit on the relationship between parental hesitancy and 

vaccination coverage for children ages 12 to 17 y to predict coverage for children ages 

5 to 11 y based on our first-stage estimates of hesitancy for this age group. Final prediction 

intervals were based on the 2.5th and 97.5th percentiles of 1 million final county-level 

coverage predictions (1,000 draws from the first regression crossed with 1,000 draws from 

the second regression).

Performance Evaluation

We compared our estimates of parental hesitancy toward vaccinating children ages 12 

to 17 y to estimates on the same indicator produced by the Office of the Assistant 

Secretary for Planning and Evaluation (ASPE), including comparing correlation coefficients 

between estimated county-level hesitancy and observed vaccination coverage on February 

1, 2022. Our first-stage logistic regression model included only a subset of the predictors 

incorporated in ASPE’s first-stage logistic regression model, so differences in performance 

mainly reflect the additional information value of county-level data from CTIS, rather than 

the value of a more sophisticated prediction model.

To evaluate our use of the relationship between hesitancy and coverage for children ages 12 

to 17 y, applied to children ages 5 to 11 y, we assessed interim coverage predictions for the 

5- to 11-y age group at 3 mo after EUA expansion against observed county-level coverage 

reported by CDC, based on mean absolute error, the intraclass correlation coefficient, and 

the percentage of counties for which the 95% prediction interval contained the observed 

coverage level nationally and at the state level. Since CDC does not report separate county-

level coverage estimates for ages 12 to 15 y versus 16 to 17 y, the time since an age group 

first became eligible for vaccination is an imprecise but best-available approach to this 

interim performance evaluation.

Monitoring Progress and Equity in Scale up

To monitor the pace of vaccination scale up, we defined a measure of ‘‘3-mo progress’’ as 

follows:

progress = Observed three month coverage
Predicted nine month coverage

(3)

To monitor equity in the pace of vaccination scale up, we used linear regression to analyze 

associations between this progress measure and the county-level socioeconomic status 

domain of CDC’s Social Vulnerability Index (SVI), which reflects measures of poverty, 

unemployment, income, and education.25
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Study Approval and Data Availability

The study was approved by Stanford’s Institutional Review Board, under protocol 

number 56018. All analyses were conducted using the R programming language version 

3.6.3. Analytic code is available through GitHub (https://github.com/PPML/CTIS-County-

Vaccination-Coverage). CTIS microdata can be accessed through a data use agreement with 

Carnegie Mellon University, while the ACS data and CDC vaccination data are publicly 

available.

Role of the Funders

Facebook was involved in the design and conduct of the US COVID-19 Trends and Impact 

Survey. All funders had no role in the analysis and interpretation of the data; preparation, 

review, or approval of the manuscript; or decision to submit the manuscript for publication.

Results

Data

Between July 1 and October 31, 2021, a total of 613,460 responses to wave 11 of the 

US CTIS were collected from parents/guardians of children younger than 18 y with 

complete demographic information. To allow for variation in parental hesitancy by child 

age group, we supplemented the analyses with 119,465 responses collected from parents/

guardians whose oldest children were between the ages of 5 and 17 y in wave 12, between 

December 19, 2021, and February 14, 2022. We report exclusions in the sample flowchart 

(Supplementary Figure S1). Unweighted and weighted distributions of respondents by age, 

documented gender, education, and race/ethnicity are reported in Table 1. Poststratification 

to the ACS reduced bias from the nonrepresentative sample. Of 3,142 counties, 1,203 had 

a sample size of at least 100, while 293 had a sample size between 1 and 10, and 23 

had zero respondents. Maps of county-level sample sizes and sample rates are reported in 

Supplementary Figures S2 and S3. Trends in parental hesitancy by month over the study 

period are shown in Supplementary Figures S4 and S5.

Hesitancy Estimates

Modeled county-level parental hesitancy toward vaccination for children ages 5 to 11 y 

ranged from 7% (95% prediction interval: 5%–9%) in San Mateo County, California, to 74% 

(61%–84%) in Platte County, Wyoming. Although the population-weighted national average 

hesitancy was 31%, 2,787 counties (89% of all counties) had hesitancy levels exceeding this 

benchmark. The skewed distribution of county-level estimates versus state- and national-

aggregates is largely driven by lower hesitancy in urban areas with large populations and 

higher hesitancy in rural areas with smaller populations. Across counties, median hesitancy 

toward vaccination was 21% (interquartile range: 18%–25%) higher for parents of children 

ages 5 to 11 y, compared with parents of children ages 12 to 17 y. Our estimates of hesitancy 

among parents of children ages 12 to 17 y using data from CTIS reflected substantially 

more substate variation in hesitancy, compared with previously published estimates from 

ASPE (Figure 2). In addition, our estimates showed a stronger correlation with vaccination 
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coverage on February 1, 2022, among children ages 12 to 17 y (CTIS: 20.78; ASPE: 20.44) 

(Supplementary Figure S6).

Predicted Coverage Levels

The predicted mean national plateau coverage level among children ages 5 to 11 y by 

August 2022, 9 mo after EUA, was 46%. There was substantial state-level variation in 

predicted plateau coverage, ranging from 30% and less in Wyoming, Alabama, Mississippi, 

Idaho, and Louisiana to 66% and greater in Connecticut, District of Columbia, and 

Massachusetts. Four of the 5 counties with the highest predicted coverage were in 

California. Ninety-two percent of counties were predicted to fall short of a 50% coverage 

benchmark by August 2022 for children ages 5 to 11 y, while 56% of counties were 

predicted to not reach 30% coverage. Eighty-six percent of counties were predicted to fall 

short of their state average coverage level, highlighting an urban-rural divide in vaccination. 

Higher levels of predicted coverage were concentrated in the Northeast, West Coast, and in 

urban centers across the country (Figure 3).

Model Validation

Figure 4 shows the relationship between predicted 3-mo coverage among children ages 

5 to 11 y and observed coverage 3 mo after EUA. The mean absolute error across all 

counties, weighted by county population size, was 0.059. The unweighted mean absolute 

error was 0.051. State-level weighted and unweighted mean absolute errors are reported in 

Supplementary Table S7. The intraclass correlation coefficient for consistency of predicted 

versus observed 3-mo coverage at the national level was 0.81. Intraclass correlation 

coefficients were greater than 0.75 for 16 states, between 0.50 and 0.75 for 19 states, and 

less than 0.50 for 10 states. Intraclass correlation coefficients at the state level are reported 

in Supplementary Table S8. The prediction interval for 3-mo coverage included the observed 

coverage level for 81% of counties.

Monitoring Progress and Equity in Scale up

Relative to long-term predicted coverage levels, at the state level, Vermont, Rhode Island, 

and Maine had the fastest pace of scale up of coverage among children ages 5 to 11 y at 3 

mo after EUA, while Louisiana, Alabama, and Mississippi had the slowest pace of scale up 

(Figure 5). We find that errors in 9-mo coverage predictions among ages 12 to 17 y were not 

significantly associated with the socioeconomic status domain of the SVI in all states except 

South Dakota, Nevada, and Montana. As a result, in addition to predicting plateau coverage 

levels, we can use county-level predicted coverage levels to monitor equity in the pace of 

vaccination scale up. More vulnerable counties, as measured by the socioeconomic status 

domain of the SVI generally made less progress toward reaching their plateau coverage 

levels over the first 3 mo after EUA expansion, compared with less vulnerable counties. 

There was significantly slower scale-up progress in more vulnerable (higher SVI) counties 

in 35 of 45 states reporting data on vaccination coverage among children ages 5 to 11 y 

(Figure 6).

Reitsma et al. Page 9

Med Decis Making. Author manuscript; available in PMC 2024 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

We generated bias-adjusted county-level predictions of long-term vaccination coverage for 

children ages 5 to 11 y that leveraged data on parental vaccination intentions from the US 

CTIS. To mitigate the impacts of selection bias in the sample, we combined CTIS data with 

representative sociodemographic data from the American Community Survey and unbiased 

programmatic data on vaccination coverage. Our approach to estimation and propagation 

of multiple sources of uncertainty produced prediction intervals that included observed 

coverage levels for 81% of counties 3 mo after EUA. Our estimation framework can be 

broadly used to generate actionable indicators on the time scale and at the geographic scale 

required for proactive decision making in public health emergencies.

Across and within states, our estimates highlight substantial geographic heterogeneity in 

both parental hesitancy and predicted coverage. When substantial geographic heterogeneity 

exists within states, county-level data are critical to efficient and effective response. In the 

case of COVID-19 vaccination, county-level estimates of hesitancy have implications for 

targeting of efforts to promote vaccination uptake, and expectations for eventual vaccination 

uptake that are relevant to planning for other protective measures, including masking, 

testing, and improved ventilation.26,27

Despite consistent messaging about the importance of promoting equity in COVID-19 

vaccination scale up, we observe a pervasive pattern of slower vaccination scale up in 

more vulnerable counties, as measured by the socioeconomic domain of CDC’s SVI.28–

30 The socioeconomic status domain of the SVI comprises measures of income, poverty, 

employment, and education. Inequity in vaccination scale up was observed in every phase 

of the COVID-19 vaccination campaign.31–34 Moving forward, as organizations prepare for 

ongoing COVID-19 boosters in the short term and for the next potential pandemic in the 

long term, more intensive and explicitly proequity policies and programs are required to 

avoid replicating the disparities in COVID-19 outcomes observed to date.

Large-scale, low-cost surveys offer a promising approach to population health measurement. 

They offer advantages for rapid and continuous deployment and allow estimation at 

smaller geographic scales compared with traditional approaches to data collection, including 

representative household surveys and retrospective reporting data. The value of county-level 

data from CTIS, compared with the state-level data available from the Census Household 

Pulse Survey, is evident in their respective performance in capturing substate heterogeneity 

in vaccination intentions and coverage. The correlation between parental hesitancy and 

coverage among children ages 12 to 17 y for CTIS was 20.78, compared with a correlation 

coefficient of 20.44 for ASPE estimates based on the Census Household Pulse Survey.8 

Although we produced estimates using a single snapshot of data, our framework could 

be adapted to routinely integrate newly available data and regularly update estimates. For 

example, the large-scale, low-cost survey could be deployed frequently to capture temporal 

trends, whereas the more expensive unbiased reference could be collected sporadically to 

update the relationship between the survey and the reference.
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Beyond the COVID-19 pandemic, large-scale, low-cost surveys could be deployed to 

routinely generate and update estimates of geographic heterogeneity in determinants of 

health, health care access, and health outcomes. Designing integrated health measurement 

systems that intentionally combine sources with different advantages across the spectrum 

of timeliness, spatial resolution, and representativeness can maximize the benefits of data 

collection relative to their costs. Future large-scale, low-cost data collection efforts should 

ensure sufficient indicators are incorporated in the survey instrument for poststratification as 

well as availability of appropriate reference indicators for secondary bias adjustment.

The results of our study should be interpreted in the context of several limitations. First, to 

predict plateau coverage levels for children ages 5 to 11 y, we assumed that the relationship 

between hesitancy and coverage observed for children ages 12 to 17 y applies to this 

younger age group. For counties in states that used the division-level regression between 

hesitancy and coverage, we assumed that the relationship between hesitancy and coverage 

across all counties in the census division would apply to the states with insufficient data 

to estimate a state-specific relationship. Our 3-mo validation supported these assumptions, 

which were necessary for prospective estimation. Second, estimates of hesitancy for children 

of different age groups became available only in wave 12 of the CTIS survey, and 

respondents were asked only about intentions to vaccinate their oldest child. Third, we 

relied on historical relationships between hesitancy and observed coverage, which would 

not necessarily capture the evolving COVID-19 policy and epidemiologic landscape. Fourth, 

our analytic framework was designed to capture geographic variation in coverage but not 

variation by other important population characteristics such as race/ethnicity within small 

geographic areas. Fifth, our first-stage regression model did not incorporate explicit spatial 

structure beyond nesting counties within states and did not incorporate additional group-

level predictors that may have improved estimates from counties with smaller samples. 

Further exploration of alternative first-stage models would be warranted if our approach 

were to be applied in practice. Despite these limitations, our estimates reflect a principled 

approach to generating bias-adjusted estimates from large-scale, low-cost survey data that 

can be used to inform decisions and evaluate actual progress against a reference scenario.

Conclusion

A combination of poststratification and secondary normalization to an unbiased reference 

can reduce bias in large-scale, low-cost survey data. Applying this method to predict long-

term county-level COVID-19 vaccination coverage among children ages 5 to 11 y, we 

found substantial substate geographic heterogeneity and disparities in the pace of scale up. 

Although direct estimates of vaccination coverage from the COVID-19 Trends and Impact 

Survey are biased, a multistep regression strategy can result in bias-adjusted actionable 

predictions on the time scale and geographic scale required for proactive public health 

decision making.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The COVID-19 pandemic catalyzed massive survey data collection efforts 

that prioritized timeliness and sample size over population representativeness.

• The potential for selection bias in these large-scale, low-cost, 

nonrepresentative data has led to questions about their utility for population 

health measurement.

• We developed a multistep regression framework to bias adjust county-level 

vaccination coverage predictions from the largest public health survey 

conducted in the United States to date: the US COVID-19 Trends and Impact 

Survey.

• Our study demonstrates the value of leveraging differing strengths of multiple 

data sources to generate estimates on the time scale and geographic scale 

necessary for proactive public health decision making.
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Figure 1. 
Methods flowchart.
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Figure 2. 
Comparison of county-level hesitancy estimates for parents of children ages 12 to 17 y. 

Study estimates using data from the COVID-19 Trends and Impact Survey (CTIS) (left), 

compared to published estimates produced by the Office of the Assistant Secretary for 

Planning and Evaluation (ASPE) (right).
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Figure 3. 
County-level map of 9-mo predicted plateau complete vaccination coverage levels for 

children ages 5 to 11 y. The color scale is split at the national average predicted coverage of 

46%.
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Figure 4. 
Three-month validation of county-level predicted versus observed complete coverage among 

children ages 5 to 11 y.
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Figure 5. 
State-level 3-mo complete vaccination scale-up progress for children ages 5 to 11 y and 

9-mo predicted coverage.
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Figure 6. 
Association between 3-mo county-level complete vaccination progress for children ages 5 

to 11 y and the socioeconomic status domain of CDC’s Social Vulnerability Index. The 

intensity of the trend lines is proportional to the linear regression R2.
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